A Deep Learning Approach for Predicting the Remaining Useful Lifetime of Lithium-Ion Batteries Using 1-D Convolutional Neural Networks

Author:

R. Jothi1,Rao Ummity Srinivasa1

Affiliation:

1. Vellore Institute of Technology, Chennai, India

Abstract

Lithium-ion batteries, among many energy storage systems, offer high energy density, low voltage dips, long lifespan, and wide working temperatures. They have been widely adopted in a variety of applications, including as electric vehicles, aerospace, energy management systems, etc. Accurate prediction of remaining useful lifetime (RUL) and health status of lithium-ion batteries have received lot of attention in the recent years. Machine learning approaches have recently gained popularity as a means of empirically learning and predicting battery behaviour. However, the complex and nonlinear behaviour of lithium-ion batteries pose challenges for traditional machine learning approaches. This paper investigates the application of two non-linear machine learning models, namely artificial neural network (ANN) and 1-D Convolution Neural Network (1-D CNN), for predicting the RUL. NASA prognostics battery dataset is utilized for the present study. Experimental results indicate that the 1-D CNN achieves better prediction accuracy as compared to ANN and other traditional machine learning.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3