Deep Learning-Based Approach to Detect Leukemia, Lymphoma, and Multiple Myeloma in Bone Marrow

Author:

U. Janasruti1,S. Kavya1,A. Merwin1,Rangasamy Vanithamani1

Affiliation:

1. Avinashilingam Institute for Home Science and Higher Education for Women, India

Abstract

Bone marrow cancer is one of the life-threatening diseases which may cause death to many individuals. Leukemia, lymphoma, multiple myeloma, and other cancers that form in the blood-forming stem cells of the bone marrow constitute bone marrow cancer. Early detection can increase the chance for remission. Accurate and rapid segmentation techniques can assist physicians to identify diseases and provide better treatment at the right time. CAD systems can be useful for the early discovery of bone marrow cancer. It features the latest updated algorithm that combines deep learning with MATLAB for health assessment. This can assist in the early detection of leukemia, lymphoma, and multiple myeloma. For denoising histopathological images, new K-SVD and fast non-local mean filter algorithms are employed. For pre-processing, algorithms like multilayer perceptron and novel hybrid histogram-based soft covering rough k-means clustering techniques are employed. Three classifiers, namely R-CNN, ResNet 50, and LSTM, are used to classify, and the performance is compared based on the accuracy.

Publisher

IGI Global

Reference16 articles.

1. Automatic bone marrow segmentation for PETCT imaging in multiple myeloma.;P.Leyden;Physica Medica,2019

2. Mosquera OrgueiraA.González PérezM. S.Díaz AriasJ. Á. (2021). Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data. Leukaemia.

3. Meil˘a & Jordan. (2021). Multi-scale Regional Attention Deeplab3+: Multiple Myeloma Plasma Cells Segmentation in Microscopic Images. Journal of Machine Learning Research.

4. Zaid & Bes. (2021). Multiple Myeloma Staging. Med Space Journal.

5. Williams, Razzo, Caro, & Morga. (2019). Genetic Segmentation and Targeted Therapeutics for Multiple Myeloma. Oncology Journal.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3