Forecasting the Space Utilization Trend in Corporate Offices

Author:

Patil Apurva1,K. V. Rajesh Kumar2ORCID

Affiliation:

1. Liverpool John Moores University, UK

2. Woxsen University, India

Abstract

The research is mainly focused on forecasting office space utilization trends in the organization using information such as office space count, space occupancy count, holidays, leaves. Space occupancy data is collected using PIR sensors. Descriptive analytics is done using creative visualizations, and model building is done using univariate and multivariate time series methods. Descriptive analytics explains that there is a positive autocorrelation in the data with no outliers and randomness. There exists a pattern of space occupancy for different office locations at different times of the day. Univariate time series models are suitable for forecasting space occupancy for single office locations, whereas multivariate time series model VAR is suitable when considering multiple office locations of a client or multiple office locations of different clients at the same time. Empirical research has exhibited that out of tested models, SARIMAX has shown better performance on multiple test datasets.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3