Exudate Detection in Fundus Images Using Deep Learning Algorithms

Author:

Shanthi T.1,Anand R.2ORCID,Pandey Binay Kumar3ORCID,Nassa Vinay Kumar4ORCID,Shahul Aakifa5,George A. S. Hovan6,Dadheech Pankaj7ORCID

Affiliation:

1. Sona College of Technology, Salem, India

2. Sri Eshwar College of Engineering, Coimbatore, India

3. Department of Information Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India

4. Rajarambapu Institute of Technology, India

5. SRM Medical College, Kattankulathur, India

6. Tbilisi State Medical University, Georgia

7. Swami Keshvanand Institute of Technology, Management, and Gramothan, India

Abstract

Diabetic Retinopathy (DR) affects people who have diabetes mellitus for a long period (20 years). It is one of the most common causes of preventable blindness in the world. If not detected early, this may cause irreversible damage to the patient's vision. One of the signs and serious DR anomalies are exudates, so these lesions must be properly detected and treated as soon as possible. To address this problem, the authors propose a novel method that focuses on the detection and classification of Exudateas Hard and soft in retinal fundus images using deep learning. Initially, the authors collected the retinal fundus images from the IDRID dataset, and after labeling the exudate with the annotation tool, the YOLOV3 is trained with specific parameters according to the classes. Then the custom detector detects the exudate and classifies it into hard and soft exudate.

Publisher

IGI Global

Reference25 articles.

1. Angadi, S., Bhat, V., R., V., & Rupanagudi, S. (2020). Exudates Detection in Fundus Image using Image Processing and Linear Regression Algorithm. Research Gate.

2. Asha, P. R., & Karpagavalli, S. (2015, January). Diabetic retinal exudates detection using machine learning techniques. In 2015 international conference on advanced computing and communication systems (pp. 1-5). IEEE.

3. A clustering approach for exudates detection in screening of diabetic retinopathy

4. Automatic detection of hard and soft exudates from retinal fundus images. Acta Universitatis Sapientiae;B.Borsos;Informatica (Vilnius),2019

5. A neural-network based approach for exudates evaluation in retinal images

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilizing Machine Learning in Legal Management to Enhance Supply Chain;Advances in Logistics, Operations, and Management Science;2024-03-01

2. Oligopolistic Markets Employing an Intelligent Physarum Solution for Supply Chain Networks;Advances in Logistics, Operations, and Management Science;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3