Hybrid Feature Selection Model for Detection of Android Malware and Family Classification

Author:

Sharma Sandeep1,Prachi 1ORCID,Chhikara Rita1,Khanna Kavita2

Affiliation:

1. The NorthCap University, India

2. Delhi Skill and Entrepreneurship University, India

Abstract

Android OS based applications offer services in various aspects of our daily lives such as banking, personal, professional, social, etc. Increased usage of Android applications makes them extremely vulnerable to various malware threats. A resilient and attack resistant machine learning based Android malware detector is desired to achieve a safe working environment. This work employs feature selection on static and dynamic features and proposes a hybrid feature selection method that can identify most informative features while eliminating the irrelevant ones. Information gain from filter and recursive feature elimination from wrapper feature selection methods outperform other evaluated feature selection techniques. Thereafter, different classification algorithms are trained on the features selected through hybrid feature selection technique and experimental results showed that XGBoost obtained maximum accuracy i.e., 98% and 89% for binary and multiclass classification respectively using only 50 features.

Publisher

IGI Global

Reference51 articles.

1. Improving dynamic analysis of android apps using hybrid test input generation

2. DL-Droid: Deep learning based android malware detection using real devices

3. Android. (2021). Aapt2. Android. https://developer.android.com/studio/command-line/aapt2.

4. Android. (2021). Ui/application exerciser monkey. Android. https://developer.android.com/studio/test/monkey,.

5. SAMADroid: A Novel 3-Level Hybrid Malware Detection Model for Android Operating System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3