Content Labelling of Hidden Services With Keyword Extraction Using the Graph Decomposition Method

Author:

Dalvi Ashwini1,Raut Saurabh Mahesh1,Joshi Nirmit1,Bhuta Dhairya Rajendra1,Nalla Saikumar1,Bhirud S. G.1

Affiliation:

1. Veermata Jijabai Technological Institute, India

Abstract

The data investigation of hidden services on the dark web is gaining attention from the research community and law enforcement agencies. However, the anonymity feature of hidden services makes it difficult to index the hidden services for investigation. Therefore, one of the primary focuses of dark web data investigation research is labelling the hidden services so that the labelled services can be classified or indexed further. The methodology deployed in the proposed work is based on keyword extraction using the graph degeneracy method. The proposed work analyzes the text data by extracting keywords from each hidden service document. The accuracy of the proposed method is validated by LDA-based topic modelling approach. The document labelling obtained by the keyword extraction method and LDA model matched with the accuracy of 78. The main intuition behind the keywords extraction method is that central nodes make good keywords. This is because central nodes with high centrality in the GoW of a document correspond to the document's keywords, which are well-understood by humans.

Publisher

IGI Global

Reference33 articles.

1. Al-Nabki, M. W., Fidalgo, E., & Mata, J. V. (2019). Darkner: A platform for named entity recognition in tor darknet. Jornadas Nacionales de Investigación en Ciberseguridad, 1, 279-280.

2. Al-Nabki, M. W., Janez-Martino, F., Vasco-Carofilis, R. A., Fidalgo, E., & Velasco-Mata, J. (2020). Improving Named Entity Recognition in Tor Darknet with Local Distance Neighbour Feature. arXiv preprint arXiv:2005.08746

3. Avarikioti, G., Brunner, R., Kiayias, A., Wattenhofer, R., & Zindros, D. (2018). Structure and content of the visible Darknet. arXiv preprint arXiv:1811.01348

4. Mining the Dark Web: Drugs and Fake Ids

5. Studying illicit drug trafficking on Darknet markets: Structure and organisation from a Canadian perspective

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Summarizing Dark Web Services with TF-IDF and LSA;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

2. An Analysis of Feature Engineering Approaches for Unlabeled Dark Web Data Classification;Algorithms for Intelligent Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3