Structure Analysis of Tor Hidden Services Using DOM-Inspired Graphs

Author:

Dalvi Ashwini1,Shah Kunjal2,Jambhalkar Uddhav2,Pawar Varun2,Bhoir Dashank2,Bhirud S. G.2

Affiliation:

1. Veermata Jijabai Technological Instutute, India

2. Veermata Jijabai Technological Institute, India

Abstract

The dark web contains sensitive data that strategic organizations must identify well in advance to anticipate and handle threats. However, associates will prefer to automate classifying the dark web pages instead of opening them due to their disturbing visual images and dangerous links and attachments. Most research is focused on web page text analysis to infer dark web data. But no visible attempt is observed in the literature that classifies dark web content at the structure level. In the chapter, extended scope of work aims to predict the genre of the webpage without opening the web page. The work converts web pages to their respective DOM (document object model) graphs. DOM graphs essentially represent web page structure. A GNN (graph neural network) is trained with constructed DOM graphs to predict the page's genre. The various graph properties like a number of nodes, edges, etc. for web page DOM graphs are extracted. Unsupervised learning (i.e., k-means clustering) is performed on the dataset to group the web pages into clusters based on similarity in structure.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3