Big Data and Machine Learning

Author:

Martinez Fernando Enrique Lopez1,Núñez-Valdez Edward Rolando1

Affiliation:

1. University of Oviedo, Spain

Abstract

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.

Publisher

IGI Global

Reference23 articles.

1. Use of a decision tree to improve accuracy of diagnosis. Nurs Res.;M. J.Aspinall,1979

2. Logistic regression and artificial neural network classification models: a methodology review

3. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi. (n.d.). Retrieved from https://e-class.teilar.gr/modules/document/file.php/CS103/IOT%20-%20SENSORS%20-%20ACTUATORS/e-Health%20Sensor%20Platform%20V2.pdf

4. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

5. The Elements of Statistical Learning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Collection and Statistical Analysis Methods in Sensor-Based Healthcare;Advances in Medical Technologies and Clinical Practice;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3