Identifying Patterns in Fresh Produce Purchases

Author:

Bogomolov Timofei1,Korolkiewicz Malgorzata W.1,Bogomolova Svetlana2ORCID

Affiliation:

1. University of South Australia, Australia

2. Business School, Ehrenberg-Bass Institute, University of South Australia, Australia

Abstract

In this chapter, machine learning techniques are applied to examine consumer food choices, specifically purchasing patterns in relation to fresh fruit and vegetables. This product category contributes some of the highest profit margins for supermarkets, making understanding consumer choices in that category important not just for health but also economic reasons. Several unsupervised and supervised machine learning techniques, including hierarchical clustering, latent class analysis, linear regression, artificial neural networks, and deep learning neural networks, are illustrated using Nielsen Consumer Panel Dataset, a large and high-quality source of information on consumer purchases in the United States. The main finding from the clustering analysis is that households who buy less fresh produce are those with children – an important insight with significant public health implications. The main outcome from predictive modelling of spending on fresh fruit and vegetables is that contrary to expectations, neural networks failed to outperform a linear regression model.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3