Navigating the Landscape of Distributed Computing Frameworks for Machine and Deep Learning

Author:

Ramasamy Mekala1ORCID,T Agila Harshini2,Elangovan Mohanraj3

Affiliation:

1. Bannari Amman Institute of Technology, India

2. Vellore Institute of Technology, Chennai, India

3. K.S. Rangasamy College of Technology, India

Abstract

For a number of reasons, distributed computing is crucial to machine learning and deep learning models. In the beginning, it makes it possible to train big models that won't fit in a single machine's memory. Second, by distributing the burden over several machines, it expedites the training process. Thirdly, it enables the management of vast amounts of data that may be dispersed across multiple devices or kept remotely. The system can continue processing data even if one machine fails because of distributed computing, which further improves fault tolerance. This chapter summarizes major frameworks Tensorflow, Pytorch, Apache spark Hadoop, and Horovod that are enabling developers to design and implement distributed computing models using large datasets. Some of the challenges faced by the distributed computing models are communication overhead, fault tolerance, load balancing, scalability and security, and the solutions are proposed to overcome the abovementioned challenges.

Publisher

IGI Global

Reference27 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., & Zheng, X. (2016). TensorFlow: A System for Large-Scale Machine Learning. Journal Name: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16) .

2. BBBC-DDRL: A hybrid big-bang big-crunch optimization and deliberated deep reinforced learning mechanisms for cyber-attack detection

3. “Communication-Efficient Distributed Stochastic Gradient Descent with Pooling Operator” Journal name;Z.Cai;SSRN,2023

4. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., & Title, Z. Z. “MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems” Journal Name: Proceedings of the 2015 ACM Symposium on Cloud Computing (SoCC '15) Volume: N/A Issue: N/A Year of Publication: 2015 Pages: 1-13

5. Jason Dai, Ding Ding, Dongjie Shi, Shengsheng Huang, Jiao Wang, Xin Qiu, Kai Huang, Guoqiong Song, Yang Wang, Qiyuan Gong, Jiaming Song, Shan Yu, Le Zheng, Yina Chen, Junwei Deng, Ge Song Title: BigDL 2.0: Seamless Scaling of AI Pipelines from Laptops to Distributed Cluster, Journal name: arXiv Volume:2204.01715 Year of Publication:2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3