Affiliation:
1. University of Augsburg, Germany
Abstract
Sentiment analysis is an important area of natural language processing that can help inform business decisions by extracting sentiment information from documents. The purpose of this chapter is to introduce the reader to selected concepts and methods of deep learning and show how deep models can be used to increase performance in sentiment analysis. It discusses the latest advances in the field and covers topics including traditional sentiment analysis approaches, the fundamentals of sentence modelling, popular neural network architectures, autoencoders, attention modelling, transformers, data augmentation methods, the benefits of transfer learning, the potential of adversarial networks, and perspectives on explainable AI. The authors' intent is that through this chapter, the reader can gain an understanding of recent developments in this area as well as current trends and potentials for future research.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献