Approaches to Sentiment Analysis on Product Reviews

Author:

Vyas Vishal1,Uma V.1ORCID

Affiliation:

1. Pondicherry University, India

Abstract

Purchase decisions are better when opinions/reviews about products are considered. Similarly, reviewing customer feedback help in improving the sale and ultimately benefit the business. Web 2.0 provides various platforms such as Twitter, Facebook, etc. where one can comment, review, or post to express his/her happiness, anger, disbelief, sadness toward products, people, etc. To computationally analyze the sentiments in text requires a better understanding of the technologies used in sentiment analysis. This chapter gives a comprehensive understanding about the techniques used in sentiment analysis. Machine learning approaches are mostly used for sentiment analysis. Whereas, as per the text and required results, lexicon-based approaches are also used for the same purpose. This chapter includes the discussion on the evaluation parameters for the sentiment analysis. This chapter would also highlight ontology approach for sentiment analysis and outstanding contributions made in this field. Keywords: Sentiment Analysis, Product reviews, Supervised learning, Unsupervised learning, Social networking websites, Ontology

Publisher

IGI Global

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3