Deep Learning Applied to COVID-19 Detection in X-Ray Images

Author:

Arteaga-Arteaga Harold Brayan1,delaPava Melissa2,Mora-Rubio Alejandro1,Bravo-Ortíz Mario Alejandro1,Alzate-Grisales Jesus Alejandro1,Arias-Garzón Daniel1,López-Murillo Luis Humberto2,Buitrago-Carmona Felipe1,Villa-Pulgarín Juan Pablo1ORCID,Mercado-Ruiz Esteban1,Martínez Rodríguez Fernanda3ORCID,Palancares Sosa Maria Jose4,Contreras-Ortiz Sonia H.5,Orozco-Arias Simon1,Hassaballah Mahmoud6ORCID,de la Iglesia Vayá María7,Cardona-Morales Oscar1,Tabares-Soto Reinel8

Affiliation:

1. Universidad Autónoma de Manizales, Colombia

2. Universidad Nacional de Colombia, Colombia

3. Universidad de Guadalajara, Mexico

4. Instituto Politécnico Nacional, Mexico

5. Universidad Tecnológica de Bolívar, Colombia

6. South Valley University, Egypt

7. Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana, Spain

8. Universidad Autonóma de Manizales, Colombia

Abstract

COVID-19 caused by the SARS-CoV-2 virus has affected healthcare and people's lifestyles worldwide since 2019. Among the available diagnostic tools, reverse transcription-polymerase chain reaction has proven highly accurate. However, the need for a specialized laboratory makes these tests expensive and time-consuming between sample collection and results. Currently, there are initial steps for the diagnosis of COVID-19 through chest x-ray images. Additionally, artificial intelligence techniques like deep learning (DL) help identify abnormalities. Inspired by the reported success of DL, this chapter presents an introduction to state-of-the-art DL-based approaches applied to the detection of COVID-19 in chest x-ray images, which currently allows assessing disease severity. The results presented are obtained using well-known models and some novel networks designed for this task. In addition, the models were evaluated using the most used public datasets, applying preprocessing techniques to improve detection results. Finally, this chapter shows some possible future research directions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3