On Analyzing Complex Data Within Clinical Decision Support Systems

Author:

Kalina Jan1ORCID

Affiliation:

1. Institute of Computer Science, The Czech Academy of Sciences, Czech Republic

Abstract

Clinical decision support systems (CDSSs) represent digital health tools applicable to important tasks within the clinical decision-making process. Training data-driven CDSSs requires extracting medical knowledge from the available information by means of machine learning. The analysis of the complex (possibly big or high-dimensional) training data allows knowledge relevant to be obtained for clinical decisions related to the diagnosis, therapy, or prognosis. This chapter is devoted to training CDSSs by machine learning based on complex data. Remarkable recent examples of CDSSs including those based on deep learning are recalled here. Principles, challenges, or ethical aspects of machine learning are discussed here in the context of CDSSs. Attention is paid to dimensionality reduction, deep learning methods for big data, or explainability of the data analysis methods. Data analysis issues are discussed also for two particular CDSSs on which the author of this chapter participated.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3