Automatic Heart Disease Diagnosis Based on MRI Image Using Deep Neural Network

Author:

Pradhan Manaswini1ORCID,Bhuiyan Alauddin2

Affiliation:

1. Fakir Mohan University, India

2. Icahn School of Medicine at Mount Sinai, USA

Abstract

In this chapter, the authors propose an adaptive bacterial foraging optimization (ABFO) algorithm for selection of features to increase the classification accuracy of heart disease diagnosis. In this approach, noises contained in the cardiac image are removed using median filter initially. Then, GLCM features are extracted from the cardiac image. Among the extracted features, optimal features are chosen using the ABFO algorithm. These selected features are then input to the classifier, which is a support vector neural network (RBNN). The classifier classifies the image into normal and abnormal. Simulation results show that the ABFO-based RBNN performs better than the conventional RBNN, ANN, KNN, and SVM in terms of accuracy.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Optimization based Feature Selection with DenseNet Model for Heart Disease Prediction;International Journal of Electrical and Electronics Research;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3