Review of Machine Learning for Bioimpedance Tomography in Regenerative Medicine

Author:

Liu Zhe1ORCID,Chen Zhou1ORCID,Yang Yunjie1ORCID

Affiliation:

1. University of Edinburgh, UK

Abstract

Monitoring cell growth and activities is crucial for regenerative medicine. Although optical imaging can provide high resolution, such methods are limited by the penetration depth. Bioimpedance tomography is an alternative way as it can overcome the penetration problem and possess the advantages of non-radiative, non-destructive, and high temporal resolution. In addition, with the rapid development of machine leaning, learning-based bioimpedance tomography is gradually introduced into regenerative medicine and demonstrates powerful potential. This chapter aims to provide an overview of the state-of-the-art machine learning methods of bioimpedance tomography in regenerative medicine while offering perspectives for future research directions. This chapter first summarizes the electrical properties of tissues and the principle of electrical impedance tomography (EIT) then extensively reviews the recent progress on learning-based single-modal and multi-modal imaging methods of EIT for regenerative medicine. Finally, promising future research directions are discussed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3