Affiliation:
1. Hindustan Institute of Technology and Science, India
Abstract
Segmentation is necessary for dental images for finding the parts of the teeth, surrounding tissues, and bones. The human identification system in dental methodology is a tedious and time-consuming process. The automatic identification system is the best solution for dental diagnosis and dental treatment systems. Choosing an appropriate region of interest with high accuracy and success rate is a challenging one. This can be attained with the help of proper segmentation methodologies. The segmentation techniques proposed for the root canal treatment are analyzed and compared. Clustering techniques and level set methods with different edge maps are implemented for the proper analysis of segmentation in dental images. Finally, the integration of coherence-enhanced diffusion filtering in basic level set segmentation methodology seems to be effective in improving the segmentation performance of dental images.