Digital Recognition of Breast Cancer Using TakhisisNet

Author:

Nanni Loris1,Lumini Alessandra2ORCID,Maguolo Gianluca3

Affiliation:

1. Università di Padova, Italy

2. University of Bologna, Italy

3. University of Padova, Italy

Abstract

In this chapter, the authors evaluate several basic image processing and advanced image pattern recognition techniques for automatically analyzing bioimages, with the aim of designing different ensembles of canonical and deep classifiers for breast lesion classification in ultrasound images. The analysis starts from convolutional neural networks (CNNs) in a square matrix that is used to feed other CNNs. The novel ensemble, named TakhisisNet, is the combination by sum rule of the whole set of the modified CNNs and the original one. Moreover, the performance of the system is further improved by combining it with some handcrafted features. Experimental results obtained on the well-known OASBUD breast cancer dataset (i.e., the open access series of breast ultrasonic data) and on a large set of bioimage classification problems show that TakhisisNet obtains very valuable results and outperforms other approaches previously tested in the same datasets.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3