Intensity Inhomogeneity Correction in Brain MR Images Based on Filtering Method

Author:

Sulochana C. Helen1,Blessy S. A. Praylin Selva2

Affiliation:

1. St. Xavier's Catholic College of Engineering, India

2. Bethlahem Institute of Engineering, India

Abstract

Brain tumor is a mass of abnormal growth of cells in the brain which disturbs the normal functioning of the brain. MRI is a powerful diagnostic tool providing excellent soft tissue contrast and high spatial resolution. However, imperfections arising in the radio frequency field and scanner-related intensity artifacts in MRI produce intensity inhomogeneity. These intensity variations pose major challenges for subsequent image processing and analysis techniques. To mitigate this effect in the intensity correction process, an enhanced homomorphic unsharp masking (EHUM) method is proposed in this chapter. The main idea of the proposed EHUM method is determination of region of interest, intensity correction based on homomorphic filtering, and linear gray scale mapping followed by cutoff frequency selection of low pass filter used in the filtering process. This method first determines the ROI to overcome the halo effect between foreground and background regions. Then the intensity correction is carried out using homomorphic filtering and linear gray scale mapping.

Publisher

IGI Global

Reference19 articles.

1. Parallel Implementation of Bias Field Correction Fuzzy C-Means Algorithm for Image Segmentation.;N.Aitalissdia;International Journal of Advanced Computer Science and Applications,2016

2. Bias artifact suppression on MR volumes

3. Illumination correction in Biomedical Images.;E.Ardizzone;Computer Information,2014

4. Intensity correction in surface-coil MR imaging

5. BrainWeb. (n.d.). Brain web: Simulated Brain Database. Retrieved from http://www. brainweb.bic.mni.mcgill.ca/brainweb

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3