YOLO v5 and Faster R-CNN Performance Evaluation of Solid Waste in Object Detection Application

Author:

Pradeep Kumar T. 1,Lilly Florence M. 1,Fathima G. 1

Affiliation:

1. Adhiyamaan College of Engineering, India

Abstract

Object detection is a booming technology that is on par with computer vision and image processing in which an object of a specific type is detected in an image or video. Object detection consists of several approaches like Retina-Net, Single Shot MultiBox Detector (SSD), and Faster R-CNN. These approaches are used in object detection with limited data, but these approaches either run in two algorithms or has high execution time; to overcome these limitations, the authors have used the latest version of Yolo with the custom dataset of solid waste. In this algorithm, an image in the solid waste dataset, which was annotated, labelled, pre-processed, and segmented and a build version is created with the yolo model; this version can either be used directly in the code for online execution or downloaded in the local system for offline execution.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing modified Yolo V5 and Faster Regional Convolutional Neural Network performance for Recycle Waste Classification;2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3