House Rent Prediction Using Ensemble-Based Regression With Real-Time Data

Author:

Mukherjee Kuntal1,Ahmed Syed Saif1,Aasif Mohammad1,Kundu Sumana2,Ghosh Soumen1ORCID

Affiliation:

1. Haldia Institute of Technology, India

2. Dr. B.C. Roy Engineering College, India

Abstract

Finding a house for rent in a new city within the budget is a major issue especially for new college students and employees. In this scenario, an effective house rent prediction algorithm will be extremely beneficial. The rent for a house is affected by certain aspects such as number of rooms, distance from the market, region, availability of transport, and many more. With the help of different machine learning algorithms, the authors try to analyze, predict, and visualize the rent of a house. In this chapter, the authors have implemented multiple linear regression models and other ensemble learning methods like Adaboost regressor, random forest regressor, gradient boost regressor, and XGboost regressor to tune the overall model performance. The authors self-surveyed data set contains records of a city in West Bengal, India. So far, almost no work has been done in this context for Haldia. The authors' proposed house rent prediction model predicts rent with an accuracy of 98.20%.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3