Using Graph Neural Network to Enhance Quality of Service Prediction

Author:

Isaoglu Lubana1ORCID,Yiltas-Kaplan Derya1ORCID

Affiliation:

1. Istanbul University-Cerrahpaşa, Turkey

Abstract

Quality of service (QoS) prediction has great importance in today's web services computing. Several researchers proposed methods to enhance the quality of service prediction. The most used one is collaborative filtering (CF), which can be categorized into three main categories: memory-based algorithms, model-based algorithms, and context-based CF algorithms. This paper proposes a model-based algorithm using the graph neural network (GNN) to predict the QoS values. To evaluate the performance of the proposed method, an experiment was conducted. The WS-dream dataset used in the experiment and the proposed method performance were compared with three baseline methods (User item-based Pearson correlation coefficient for QoS prediction-UIPCC, reputation-aware network embedding-based QoS Prediction-RANEP, and trust-aware approach TAP for personalized QoS prediction). The experiment results show that the proposed method, the GNN-based QoS prediction algorithm, performs better than memory-based and other model-based methods in terms of RMSE and MAE in most cases.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3