A Comprehensive Insights and Research Focus on Scaffolds for Meniscal Regeneration Using Additive Manufacturing

Author:

Sarveswaran S.1,Kishore Kumar A.1,Murugarajan A.1

Affiliation:

1. Sri Ramakrishna Engineering College, India

Abstract

An essential component of a healthy knee joint is the meniscus. Complex fibro cartilaginous tissue called the meniscus is what keeps proper biomechanics in place. Meniscal injury is frequently associated with active lifestyles. In order to aid in the recovery of meniscal disorders, current meniscal tissue engineering and tissue regeneration research includes polymeric biomaterials, cell-based therapies, growth factors, and 3D printed hybrid scaffolds. Additive manufacturing, often known as three-dimensional (3D) printing, is able to create functional physical components with or without porosity by layer-by-layer deposition of the materials using 3D computer models. This chapter discusses the evolution of the computer-aided design (CAD) approach for creating meniscal scaffolds, as well as tips on how to optimise the internal architecture, cutting-edge materials, and manufacturing factors for the best biomimetic performance. The review study also covers the advantages and disadvantages of producing meniscal scaffolds using 3D printing technology.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3