Role of Machine and Deep Learning Techniques in Diabetic Retinopathy Detection

Author:

Nagula Jagan Mohan1ORCID,R. Murugan1,Goel Tripti1

Affiliation:

1. National Institute of Technology, Silchar, India

Abstract

Machine learning (ML) and deep learning (DL) techniques play a significant role in diabetic retinopathy (DR) detection via grading the severity levels or segmenting the retinal lesions. High sugar levels in the blood due to diabetes causes DR, a leading cause of blindness. Manual detection or grading of the DR requires ophthalmologists' expertise and consumes time prone to human errors. Therefore, using fundus images, the ML and DL algorithms help automatic DR detection. The fundus imaging analysis helps the early DR detection, controlling, and treatment evaluation of DR conditions. Knowing the fundus image analysis requires a strong knowledge of the system and ML and DL functionalities in computer vision. DL in fundus imaging is a rapidly expanding research area. This chapter presents the fundus images, DR, and its severity levels. Also, this chapter explains the performance analysis of the various ML DL-based DR detection techniques. Finally, the role of ML and DL techniques in DR detection or severity grading is discussed.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Retinal Fundus Images into Normal / Diabetic with Fused Deep Features;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3