Affiliation:
1. National Institute of Technology, Silchar, India
Abstract
Machine learning (ML) and deep learning (DL) techniques play a significant role in diabetic retinopathy (DR) detection via grading the severity levels or segmenting the retinal lesions. High sugar levels in the blood due to diabetes causes DR, a leading cause of blindness. Manual detection or grading of the DR requires ophthalmologists' expertise and consumes time prone to human errors. Therefore, using fundus images, the ML and DL algorithms help automatic DR detection. The fundus imaging analysis helps the early DR detection, controlling, and treatment evaluation of DR conditions. Knowing the fundus image analysis requires a strong knowledge of the system and ML and DL functionalities in computer vision. DL in fundus imaging is a rapidly expanding research area. This chapter presents the fundus images, DR, and its severity levels. Also, this chapter explains the performance analysis of the various ML DL-based DR detection techniques. Finally, the role of ML and DL techniques in DR detection or severity grading is discussed.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of Retinal Fundus Images into Normal / Diabetic with Fused Deep Features;2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2024-04-04