Improved Breast Cancer Detection in Mammography Images

Author:

Awujoola Olalekan Joel1ORCID,Aniemeka Theophilus Enem2,Ogwueleka Francisca N.3ORCID,Abioye Oluwasegun Abiodun1,Awujoola Abidemi Elizabeth1,Uwa Celestine Ozoemenam1

Affiliation:

1. Nigerian Defence Academy, Nigeria

2. Nigerian Airforce Institute of Technology, Nigeria

3. University of Abuja, Nigeria

Abstract

Cancer, characterized by uncontrolled cell division, is an incurable ailment, with breast cancer being the most prevalent form globally. Early detection remains critical in reducing mortality rates. Medical imaging is vital for localizing and diagnosing breast cancer, providing key insights for identification. This study introduces an automatic hybrid feature recognition method for breast cancer diagnosis using images from two mammography datasets. The method employs a convolutional neural network (CNN) and local binary pattern (LBP) for feature extraction. Correlation-based feature selection techniques reduce dimensionality, enabling faster computation and improved accuracy. The proposed model's superiority is established through comparative analysis with cutting-edge deep models, achieving 96% accuracy across the MIAS and INbreast datasets. The hybrid method demonstrates high accuracy with minimal computational tasks.

Publisher

IGI Global

Reference49 articles.

1. Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning. Asian Pacific Journal of Cancer Prevention;B. S.Abunasser,2023

2. Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset

3. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms

4. Cliquecnn: Deep unsupervised exemplar learning.;M. A.Bautista;Advances in Neural Information Processing Systems,2016

5. Representation Learning: A Review and New Perspectives

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of Anticancer Properties of Thai Plants;Advances in Medical Diagnosis, Treatment, and Care;2024-04-19

2. Improving Leukemia Detection Accuracy;Advances in Medical Technologies and Clinical Practice;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3