Breast Cancer Diagnosis in Mammograms Using Wavelet Analysis, Haralick Descriptors, and Autoencoder

Author:

Araujo de Santana Maira1ORCID,Silva Pereira Jessiane Mônica2,Wagner Azevedo da Silva Washington1,Pinheiro dos Santos Wellington1ORCID

Affiliation:

1. Universidade Federal de Pernambuco, Brazil

2. Universidade de Pernambuco, Brazil

Abstract

In this chapter, the authors used autoencoder in data preprocessing step in an attempt to improve image representation, consequently increasing classification performance. The authors applied autoencoder to the task of breast lesion classification in mammographic images. Image Retrieval in Medical Applications (IRMA) database was used. This database has a total of 2,796 ROI (regions of interest) images from mammograms. The images are from patients in one of the three conditions: with a benign lesion, a malignant lesion, or presenting healthy breast. In this study, images were from mostly fatty breasts and authors assessed different intelligent algorithms performance in grouping the images in their respective diagnosis.

Publisher

IGI Global

Reference55 articles.

1. Breast cancer classification using deep belief networks

2. American Cancer Society. (2019). Cancer Facts & Figures 2019. American Cancer Society.

3. Uso de regiões elipsoidais como ferramenta de segmentação em termogramas de mama.;M.Araujo;XXIII Congresso Brasileiro de Engenharia Biomédica (CBEB 2012),2012

4. Fuzzy Morphological Extreme Learning Machines to detect and classify masses in mammograms

5. Survey on Segmentation Methods for Locating Masses in a Mammogram Image

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3