A Novel Fuzzy Frequent Itemsets Mining Approach for the Detection of Breast Cancer

Author:

Ramesh Dhanaseelan F. 1,Jeyasutha M. 1

Affiliation:

1. St. Xavier's Catholic College of Engineering, India

Abstract

Breast cancer, a type of malignant tumor, affects women more than men. About one-third of women with breast cancer die of this disease. Hence, it is imperative to find a tool for the proper identification and early treatment of breast cancer. Unlike the conventional data mining algorithms, fuzzy logic-based approaches help in the mining of association rules from quantitative transactions. In this study, a novel fuzzy methodology, IFFP (improved fuzzy frequent pattern mining), based on a fuzzy association rule mining for biological knowledge extraction, is introduced to analyze the dataset in order to find the core factors that cause breast cancer. It is determined that the factor, mitoses, has low range of values on both malignant and benign, and hence it does not contribute to the detection of breast cancer. On the other hand, the high range of bare nuclei shows more chances for the presence of breast cancer. Experimental evaluations on real datasets show that the proposed method outperforms recently proposed state-of-the-art algorithms in terms of runtime and memory usage.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3