Affiliation:
1. University of Macau, Macau
2. University of Macau, Macau SAR
Abstract
To compare with two datasets based on attributes by using classification algorithms, for the attributes, the authors need to select them by rules and the system is known as rule-based reasoning system which classifies a given test instance into a particular outcome from the learned rules. The test instance carries multiple attributes, which are usually the values of diagnostic tests. In this article, the authors propose a classifier ensemble-based method for comparison of two breast cancer datasets. The ensemble data mining learning methods are applied to rule generation, and a multi-criterion evaluation approach is used for selecting reliable rules over the results of the ensemble methods. The efficacy of the proposed methodology is illustrated via an example of two breast cancer datasets. This article introduces a novel fuzzy rule-based classification method called FURIA, to obtain a relationship between two breast cancer datasets. Hence, it can find the similarity between these two datasets. The new method is compared vis-à-vis with other classical statistical approaches such as correlation and mutual information gain.