Features Selection Study for Breast Cancer Diagnosis Using Thermographic Images, Genetic Algorithms, and Particle Swarm Optimization

Author:

Rodrigues da Silva Amanda Lays1,Araújo de Santana Maíra2ORCID,Lins de Lima Clarisse2,Silva de Andrade José Filipe1,Silva de Souza Thifany Ketuli1,Jacinto de Almeida Maria Beatriz1,Azevedo da Silva Washington Wagner1,Fernandes de Lima Rita de Cássia1,Pinheiro dos Santos Wellington1ORCID

Affiliation:

1. Federal University of Pernambuco, Recife, Brazil

2. University of Pernambuco, Recife, Brazil

Abstract

Early detection of breast cancer is critical to improve treatment efficiency and chance of cure. Mammography is the main method for breast cancer screening; however, it has some limitations. Infrared thermography is a technique that is being studied for its benefits. The existing tumor classification systems are detailed, complex, and have low usability. Therefore, combining specialized professionals with methods of digital image analysis using thermography can help improve the diagnosis. Considering this, some computational areas are working on studies and creating methods to assess these data. The features selection plays a key role in this process, as it is a way to help solving data multidimensionality problems. This study aims to reduce the amount of features from thermographic images with mammary lesions. The authors used genetic algorithm and particle swarm optimization for features selection and compared the performance of each method to the performance using the entire set of features.

Publisher

IGI Global

Reference55 articles.

1. Análise de Imagens de Termografia Dinâmica para Classificação de Alterações na Mama Usando Séries Temporais.;F.Andrade;Proceedings of Conference on Graphics, Patterns and Images,2017

2. Andrade, M. K. S., Santana, M. A., & Santos, W. P. (2018). Avaliação do Desempenho de Classificadores Inteligentes na Detecção da Doença de Alzheimer em Imagens de Ressonância Magnética Utilizando Extratores de Forma e Textura. Paper presented at the II Simpósio de Inovação em Engenharia Biomédica (SABIO 2018), Recife, Brazil.

3. Araújo, M. C. (2009). Utilização de Câmera por Infravermelho para Avaliação de Diferentes Patologias em Clima Tropical e Uso Conjunto de Sistemas de Banco de Dados para Detecção do Câncer de Mama (Master's thesis, Federal University of Pernambuco, Recife, Brazil). Available from https://repositorio.ufpe.br/handle/123456789/5062

4. Morphological extreme learning machines applied to detect and classify masses in mammograms

5. Survey on Segmentation Methods for Locating Masses in a Mammogram Image

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3