Data Mining and Machine Learning Approaches in Breast Cancer Biomedical Research

Author:

Chellamuthu Gunavathi1,Kannimuthu S. 2,Premalatha K. 3

Affiliation:

1. VIT University, India

2. Karpagam College of Engineering, India

3. Bannari Amman Institute of Technology, India

Abstract

Breast cancer is the most common invasive cancer in females worldwide. Breast cancer diagnosis and breast cancer prognosis are the two important challenges for the researchers in the medical field and also for the practitioners. If the cells in the breast start to grow without any control, it leads to cancer. Normally, the growth of the lump can be seen using x-ray. The benign and malignant breast lumps are distinguished during breast cancer diagnosis. The prognosis process predicts the period at which the breast cancer is likely to reappear in patients who have had their cancers removed. Data mining techniques and machine learning algorithms are mostly used in the whole process of breast cancer diagnosis and treatment. They utilize the large volume of breast cancer data for extracting knowledge. The application of data mining and machine learning methods in biomedical research is presently vital and crucial in efforts to transform intelligently all available data into valuable knowledge.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3