Deep Learning With Analytics on Edge

Author:

Srivastava Kavita1

Affiliation:

1. Institute of Information Technology and Management, GGSIP University, India

Abstract

The steep rise in autonomous systems and the internet of things in recent years has influenced the way in which computation has performed. With built-in AI (artificial intelligence) in IoT and cyber-physical systems, the need for high-performance computing has emerged. Cloud computing is no longer sufficient for the sensor-driven systems which continuously keep on collecting data from the environment. The sensor-based systems such as autonomous vehicles require analysis of data and predictions in real-time which is not possible only with the centralized cloud. This scenario has given rise to a new computing paradigm called edge computing. Edge computing requires the storage of data, analysis, and prediction performed on the network edge as opposed to a cloud server thereby enabling quick response and less storage overhead. The intelligence at the edge can be obtained through deep learning. This chapter contains information about various deep learning frameworks, hardware, and systems for edge computing and examples of deep neural network training using the Caffe 2 framework.

Publisher

IGI Global

Reference11 articles.

1. IIoT Gateway for Edge Computing Applications;M.Crăciunescu;Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019. Studies in Computational Intelligence,2020

2. Fog Based IIoT Architecture Based on Big Data Analytics for 5G-networked Smart Factory

3. Decentralized Algorithm for Randomized Task Allocation in Fog Computing Systems

4. Edge-Oriented Computing Paradigms

5. Enabling Workload Engineering in Edge, Fog, and Cloud Computing through OpenStack-based Middleware

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3