Probabilistic-QoS-Aware Multi-Workflow Scheduling Upon the Edge Computing Resources

Author:

Tang Tao1,Ma Yuyin1,Feng Wenjiang1

Affiliation:

1. Chongqing University, China

Abstract

Edge computing is an evolving decentralized computing infrastructure by which end applications are situated near the computing facilities. While the edge servers leverage the close proximity to the end-users for provisioning services at reduced latency and lower energy costs, their capabilities are constrained by limitations in computational and radio resources, which calls for smart, quality-of-service (QoS) guaranteed, and efficient task scheduling methods and algorithms. For addressing the edge-environment-oriented multi-workflow scheduling problem, the authors consider a probabilistic-QoS-aware approach to multi-workflow scheduling upon edge servers and resources. It leverages a probability-mass function-based QoS aggregation model and a discrete firefly algorithm for generating the multi-workflow scheduling plans. This research conducted an experimental case study based on varying types of workflow process models and a real-world dataset for edge server positions. It can be observed the method clearly outperforms its peers in terms of workflow completion time, cost, and deadline violation rate.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3