Knowledge Discovery Through Intelligent Data Analytics in Healthcare

Author:

S. Kowsalya1,S. Saraswathi1

Affiliation:

1. Sri Krishna Arts and Science College, India

Abstract

The chapter aims to embed the demanding computing concepts to attain intelligent data analytics in the domain of healthcare. The targeted outcome provides the pathway to design the brainy decision support system needed to have efficient prediction with trained input patterns. The usage of IoT devices is increasing tremendously to overcome the challenges existing in handling the data related to human-relevant happenings. The volume, velocity, and variety of data are emerging newly and dominating the decision support characteristics. This scenario happens almost in all the computing fields, but more attention is expected to implement in the healthcare sector due to the existence of sensitive data. The traditional data analytics methods are deviating in the performance due to the unpredictable dynamic challenges emerging in the day-to-day operation. The efficient features of demanding computing strategies are motivated to embed together to discover crucial knowledge through intelligent data analytics.

Publisher

IGI Global

Reference10 articles.

1. Adhikari, A., & Adhikari, J. (2015). Advances in Knowledge Discovery in Databases. Springer Publications.

2. Andreev, S., Balandin, S., & Koucheryavy, Y. (2022). Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer International Publishing.

3. Ghosh, Shaw, Islam, & Piuri. (2022). AI and IoT for Smart City Applications. Springer.

4. Kumar, R., Srivastava, R., & Balas, V. E. (2019). Recent Trends and Advances in Artificial Intelligence and Internet of Things. Springer International Publishing.

5. Data Mining and Knowledge Discovery Handbook;O.Maimon;Springer,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3