Cloud4NFICA-Nearness Factor-Based Incremental Clustering Algorithm Using Microsoft Azure for the Analysis of Intelligent Meter Data

Author:

Chaudhari Archana Yashodip1,Mulay Preeti1ORCID

Affiliation:

1. Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India

Abstract

Intelligent electricity meters (IEMs) form a key infrastructure necessary for the growth of smart grids. IEMs generate a considerable amount of electricity data incrementally. However, on an influx of new data, traditional clustering task re-cluster all of the data from scratch. The incremental clustering method is an essential way to solve the problem of clustering with dynamic data. Given the volume of IEM data and the number of data types involved, an incremental clustering method is highly complex. Microsoft Azure provide the processing power necessary to handle incremental clustering analytics. The proposed Cloud4NFICA is a scalable platform of a nearness factor-based incremental clustering algorithm. This research uses the real dataset of Irish households collected by IEMs and related socioeconomic data. Cloud4NFICA is incremental in nature, hence accommodates the influx of new data. Cloud4NFICA was designed as an infrastructure as a service. It is visible from the study that the developed system performs well on the scalability aspect.

Publisher

IGI Global

Reference38 articles.

1. ISSD Archive. (2012). Data from the Commission for energy regulation (CER)- smart metering project. Retrieved from http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

2. Smart metering deployment scenarios in India and implementation using RF mesh network

3. Clustering household energy-saving behaviours by behavioural attribute

4. Chakrabarty, S. (2018, August 8). By the Numbers: New Emissions Data Quantify India’s Climate Challenge. Retrieved from https://www.wri.org/blog/2018/08/numbers-new-emissions-data-quantify-indias-climate-challenge

5. A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3