Designing and Modeling of Crowdsourcing for Optimizing the Public Healthcare Informatics System in Society 5.0

Author:

Rahi Pankaj1,Kuzhaloli S.2,Poornima E.3,Chakravarthi Dhruva Sreenivasa4ORCID,Vijayakumar P.5ORCID

Affiliation:

1. Institute of Health Management and Research, Bangalore, India

2. Agni College of Technology, Chennai, India

3. Gokkaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India

4. Independent Researcher, Guntur, India

5. Vellore Institute of Technology, Chennai, India

Abstract

Technology, communications, and social media have changed emergency and disaster response networks. These developments enable affected citizens to generate georeferenced real-time data on important events, fueling this new landscape. Detecting and investigating such events requires crowdsourcing and machine learning. Crowdsourcing generates, aggregates, and filters data, while automatic tools analyze publicly available data using information retrieval techniques. Crowdsourcing encourages and coordinates large-scale participation in many fields. Crowdsourcing useful data and human computation interchangeable knowledge will help public health informatics soon. These efforts will lower any nation's disease burden and healthcare costs. It advances sustainable development goals and milestones. This chapter proposes crowd-sourcing modeling to improve public health surveillance for communicable and non-communicable diseases. These efforts will lower any nation's disease burden and also improve sustainable development goals.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3