Script Identification of Camera Based Bilingual Document Images Using SFTA Features

Author:

Dhandra B.V.1,Mallappa Satishkumar2,Mukarambi Gururaj1

Affiliation:

1. Symbiosis Institute of Computer Studies and Research, Symbiosis International (Deemed University), Pune, India

2. Gulbarga University, Kalaburagi, India

Abstract

In this article, the exhaustive experiment is carried out to test the performance of the Segmentation based Fractal Texture Analysis (SFTA) features with nt = 4 pairs, and nt = 8 pairs, geometric features and their combinations. A unified algorithm is designed to identify the scripts of the camera captured bi-lingual document image containing International language English with each one of Hindi, Kannada, Telugu, Malayalam, Bengali, Oriya, Punjabi, and Urdu scripts. The SFTA algorithm decomposes the input image into a set of binary images from which the fractal dimension of the resulting regions are computed in order to describe the segmented texture patterns. This motivates use of the SFTA features as the texture features to identify the scripts of the camera-based document image, which has an effect of non-homogeneous illumination (Resolution). An experiment is carried on eleven scripts each with 1000 sample images of block sizes 128 × 128, 256 × 256, 512 × 512 and 1024 × 1024. It is observed that the block size 512 × 512 gives the maximum accuracy of 86.45% for Gujarathi and English script combination and is the optimal size. The novelty of this article is that unified algorithm is developed for the script identification of bilingual document images.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3