Advancements in Deep Learning for Automated Dubbing in Indian Languages

Author:

Sasithradevi A. 1,Shoba S. 1,Manikandan E. 2,Baskar Chanthini3

Affiliation:

1. Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, India

2. Centre for Innovation and Product Development, Vellore Institute of Technology, Chennai, India

3. Vellore Institute of Technology, Chennai, India

Abstract

After the proliferation of deep learning technologies in computer vision applications, natural language processing has used deep learning methods for its building steps like segmentation, classification, prediction, understanding, and recognition. Among different natural language processing domains, dubbing is one of the challenging tasks. Deep learning-based methodologies for dubbing will translate unknown language audio into meaningful words. This chapter provides a detailed study on the recent deep learning models in literature for dubbing. Deep learning models for dubbing can be categorized based on the feature representation as audio, visual, and multimodal features. More models are prevailing for English language, and a few techniques are available for Indian languages. In this chapter, the authors provide an end-to-end solution to predict the lip movements and translate them into natural language. This study also covers the recent enhancements in deep learning for natural language processing. Also, the future directions for the automated dubbing process domain are discussed.

Publisher

IGI Global

Reference13 articles.

1. Lip Reading Multiclass Classification by Using Dilated CNN with Turkish Dataset

2. Kumar, R., Sotelo, J., Kumar, K., de Brébisson, A., & Bengio, Y. (2017). Obamanet: Photo-realistic lip-sync from text. arXiv preprint arXiv:1801.01442.

3. Kunchukuttan, A., Mehta, P., & Bhattacharyya, P. (2017). The iit bombay english-hindi parallel corpus. arXiv preprint arXiv:1710.02855.

4. From Speech-to-Speech Translation to Automatic Dubbing

5. Evaluating and Optimizing Prosodic Alignment for Automatic Dubbing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3