Use of Novel Ensemble Machine Learning Approach for Social Media Sentiment Analysis

Author:

Nazeer Ishrat1,Rashid Mamoon1ORCID,Gupta Sachin Kumar2,Kumar Abhishek3

Affiliation:

1. School of Computer Science and Engineering, Lovely Professional University, Jalandhar, India

2. School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Jammu, India

3. School of Computer Science and IT, Jain University, Bangalore, India

Abstract

Twitter is a platform where people express their opinions and come with regular updates. At present, it has become a source for many organizations where data will be extracted and then later analyzed for sentiments. Many machine learning algorithms are available for twitter sentiment analysis which are used for automatically predicting the sentiment of tweets. However, there are challenges that hinder machine learning classifiers to achieve better results in terms of classification. In this chapter, the authors are proposing a novel feature generation technique to provide desired features for training model. Next, the novel ensemble classification system is proposed for identifying sentiment in tweets through weighted majority rule ensemble classifier, which utilizes several commonly used statistical models like naive Bayes, random forest, logistic regression, which are weighted according to their performance on historical data, where weights are chosen separately for each model.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3