Affiliation:
1. Guru Gobind Singh Indraprastha University, Delhi, India
Abstract
This article presents a study on ensemble learning and an empirical evaluation of various ensemble classifiers and ensemble features for sentiment classification of social media data. The data was collected from Twitter in real-time using Twitter API and text pre-processing and ranking-based feature selection is applied to textual data. A framework for a hybrid ensemble learning model is presented where a combination of ensemble features (Information Gain and CHI-Squared) and ensemble classifier that includes Ada Boost with SMO-SVM and Logistic Regression has been implemented. The classification of Twitter data is performed where sentiment analysis is used as a feature. The proposed model has shown improvements as compared to the state-of-the-art methods with an accuracy of 88.2% with a low error rate.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献