Affiliation:
1. The University of the South Pacific, Suva, Fiji
2. University of Petroleum and Energy Studies, India
Abstract
A number of numerical practices exist that actuaries use to predict annual medical claim expense in an insurance company. This amount needs to be included in the yearly financial budgets. Inappropriate estimating generally has negative effects on the overall performance of the business. This study presents the development of artificial neural network model that is appropriate for predicting the anticipated annual medical claims. Once the implementation of the neural network models was finished, the focus was to decrease the mean absolute percentage error by adjusting the parameters, such as epoch, learning rate, and neurons in different layers. Both feed forward and recurrent neural networks were implemented to forecast the yearly claims amount. In conclusion, the artificial neural network model that was implemented proved to be an effective tool for forecasting the anticipated annual medical claims for BSP Life. Recurrent neural network outperformed the feed forward neural network in terms of accuracy and computation power required to carry out the forecasting.