Vocal Acoustic Analysis

Author:

Teixeira João Paulo1ORCID,Alves Nuno2,Fernandes Paula Odete3ORCID

Affiliation:

1. Research Centre in Digitalization and Intelligent Robotics (CEDRI) and Applied Management Research Unit (UNIAG), Instituto Politécnico de Bragança, Bragança, Portugal

2. Instituto Politécnico de Bragança, Bragança, Portugal

3. Applied Management Research Unit (UNIAG), Instituto Politécnico de Bragança, Bragança, Portugal

Abstract

Vocal acoustic analysis is becoming a useful tool for the classification and recognition of laryngological pathologies. This technique enables a non-invasive and low-cost assessment of voice disorders, allowing a more efficient, fast, and objective diagnosis. In this work, ANN and SVM were experimented on to classify between dysphonic/control and vocal cord paralysis/control. A vector was made up of 4 jitter parameters, 4 shimmer parameters, and a harmonic to noise ratio (HNR), determined from 3 different vowels at 3 different tones, with a total of 81 features. Variable selection and dimension reduction techniques such as hierarchical clustering, multilinear regression analysis and principal component analysis (PCA) was applied. The classification between dysphonic and control was made with an accuracy of 100% for female and male groups with ANN and SVM. For the classification between vocal cords paralysis and control an accuracy of 78,9% was achieved for female group with SVM, and 81,8% for the male group with ANN.

Publisher

IGI Global

Reference30 articles.

1. Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions

2. Almeida, N. C. (2010). Sistema inteligente para diagnóstico de patologias na laringeutilizando máquinas de vetor de suporte. Universidade Federal do Rio Grande do Norte. Retrieved from https://repositorio.ufrn.br/jspui/handle/123456789/15149

3. Barry, W. J., & Pützer, M. (2007). Saarbruecken Voice Database. Stimmdaten Bank. Retrieved from http://www.stimmdatenbank.coli.uni-saarland.de/help_en.php4

4. Ben-Hur, A., & Weston, J. (2010). A User’s Guide to Support Vector Machines. SourceForge. Retrieved from http://pyml.sourceforge.net/doc/howto.pdf

5. Comparison of Voice Analysis Systems for Perturbation Measurement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3