A Novel Hybridization of ARIMA, ANN, and K-Means for Time Series Forecasting

Author:

Pannakkong Warut1,Pham Van-Hai2,Huynh Van-Nam1

Affiliation:

1. School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Japan

2. Pacific Ocean University, Nha Trang, Vietnam

Abstract

This article aims to propose a novel hybrid forecasting model involving autoregressive integrated moving average (ARIMA), artificial neural networks (ANNs) and k-means clustering. The single models and k-means clustering are used to build the hybrid forecasting models in different levels of complexity (i.e. ARIMA; hybrid model of ARIMA and ANNs; and hybrid model of k-means, ARIMA, and ANN). To obtain the final forecasting value, the forecasted values of these three models are combined with the weights generated from the discount mean square forecast error (DMSFE) method. The proposed model is applied to three well-known data sets: Wolf's sunspot, Canadian lynx and the exchange rate (British pound to US dollar) to evaluate the prediction capability in three measures (i.e. MSE, MAE, and MAPE). In addition, the prediction performance of the proposed model is compared to ARIMA; ANNs; Khashei and Bijari's model; and the hybrid model of k-means, ARIMA, and ANN. The obtained results show that the proposed model gives the best performance in MSE, MAE, and MAPE for all three data sets.

Publisher

IGI Global

Reference35 articles.

1. A combination of artificial neural network and random walk models for financial time series forecasting

2. Forecasting aggregate retail sales:

3. Amin-Naseri, M., & Gharacheh, E. (2007). A hybrid artificial intelligence approach to monthly forecasting of crude oil price time series. In Proceedings of the 10th International Conference on Engineering Applications of Neural Networks (pp. 160-167).

4. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm

5. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3