Affiliation:
1. University of Fallujah, Baghdad, Iraq
Abstract
Cries of infants can be seen as an indicator of pain. It has been proven that crying caused by pain, hunger, fear, stress, etc., show different cry patterns. The work presented here introduces a comparative study between the performance of two different classification techniques implemented in an automatic classification system for identifying two types of infants' cries, pain, and non-pain. The techniques are namely, Continuous Hidden Markov Models (CHMM) and Artificial Neural Networks (ANN). Two different sets of acoustic features were extracted from the cry samples, those are MFCC and LPCC, the feature vectors generated by each were eventually fed into the classification module for the purpose of training and testing. The results of this work showed that the system based on CDHMM have better performance than that based on ANN. CDHMM gives the best identification rate at 96.1%, which is much higher than 79% of ANN whereby in general the system based on MFCC features performed better than the one that utilizes LPCC features.
Reference26 articles.
1. Al-Alaoui, M. A., Al-Kanj, L., Azar, J., & Yaacoub, E. (2008). Speech recognition using artificial neural networks and hidden Markov models. In The 3rd International Conference on Mobile and Computer Aided Learning,IMCL Conference. Amman, Jordan.
2. Automatic Recognition System of Infant Cry based on F-Transform
3. Study of acoustic features of newborn cries that correlate with the context
4. Identifying Pain and Hunger in Infant Cry with Classifiers Ensembles
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献