Forecasting Demand for Hospital Services

Author:

Acar Yavuz1,Cetin Onur2ORCID,Rodopman Ozgun Burcu1,Minga Recep3,Doguer Hasret3

Affiliation:

1. Bogazici University, Turkey

2. Trakya University, Turkey

3. Datafors Artificial Intelligence Inc., Turkey

Abstract

Demand forecasting is one of the important issues related to operations management in health sector. Forecasting patient volume in hospitals provides an important input regarding the correct planning of financial resources, human resources, and material resources. In this chapter, the authors first discuss forecasting patient volume in hospital services and then present a case study involving patient volume forecasting for a local hospital in Turkey. Different traditional statistical methods and machine learning methods are applied to both inpatient and outpatient demand from six polyclinics and a surgery room. Results show that damped trend exponential smoothing method outperforms other methods based on overall performance.

Publisher

IGI Global

Reference24 articles.

1. Forecasting method selection in a global supply chain

2. Demand analysis and capacity management for hospital emergencies using advanced forecasting models and stochastic simulation

3. Barros, O., Weber, R., Reveco, C., Ferro, E., & Julio, C. (2011) Demand Forecasting and Capacity Management for Hospitals. Documentos de Trabajo, Serie Gestion. http://www.dii.uchile.cl/~ceges/publicaciones/ceges%20123%20OB.pdf

4. Forecasting the number of outpatient visits using a new fuzzy time series based on weighted-transitional matrix

5. Fitting the damped trend method of exponential smoothing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3