Controlling Computer Features Through Hand Gesture

Author:

Babu C. V. Suresh1ORCID,Sivaneshwaran J.2ORCID,Gokul Krishnan 2,Keerthi Varshaan 2,Anirudhan D.2

Affiliation:

1. Hindustan Institute of Technolgy and Science, Chennai, India

2. Hindustan Institute of Technology and Science, India

Abstract

This chapter introduces an AI-driven hand gesture recognition system designed to enhance computer settings control, prioritizing improved accessibility and user experiences. Leveraging machine learning algorithms trained on a dataset of relevant hand gestures (e.g., volume and brightness control), this project emphasizes data analysis for trend identification and system refinement. Successful outcomes could stimulate further research and innovation, potentially revolutionizing accessibility and user experience solutions. Ultimately, this endeavor aims to empower computer users with a more intuitive and accessible means of adjusting settings, contributing significantly to human-computer interaction advancement.

Publisher

IGI Global

Reference22 articles.

1. Abdel-Hamid, O. (2012). Applying convolutional neural network concepts to hybrid nn-hmm model for speech recognition. In 2012 IEEE international conference on Acoustics, speech and signal processing (ICASSP). IEEE.

2. Babu, S. C.V. (2022). Artificial Intelligence and Expert Systems. Anniyappa Publications.

3. Babu, S. C.V. (2023). IoT and its Applications. Anniyappa Publications.

4. Vision Based Hand Gesture Recognition;P.Garg;World Academy of Science, Engineering and Technology,2009

5. Human-Machine Interaction Sensing Technology Based on Hand Gesture Recognition: A Review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blockchain Empowerment for Securing IoT Sensory Data in Next-Gen Intelligent Systems;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-04-05

2. Equity-Driven Solutions;Practice, Progress, and Proficiency in Sustainability;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3