Remote Patient Monitoring for Healthcare

Author:

Stranieri Andrew1ORCID,Balasubramanian Venki1

Affiliation:

1. Federation University, Australia

Abstract

Remote patient monitoring involves the collection of data from wearable sensors that typically requires analysis in real time. The real-time analysis of data streaming continuously to a server challenges data mining algorithms that have mostly been developed for static data residing in central repositories. Remote patient monitoring also generates huge data sets that present storage and management problems. Although virtual records of every health event throughout an individual's lifespan known as the electronic health record are rapidly emerging, few electronic records accommodate data from continuous remote patient monitoring. These factors combine to make data analytics with continuous patient data very challenging. In this chapter, benefits for data analytics inherent in the use of standards for clinical concepts for remote patient monitoring is presented. The openEHR standard that describes the way in which concepts are used in clinical practice is well suited to be adopted as the standard required to record meta-data about remote monitoring. The claim is advanced that this is likely to facilitate meaningful real time analyses with big remote patient monitoring data. The point is made by drawing on a case study involving the transmission of patient vital sign data collected from wearable sensors in an Indian hospital.

Publisher

IGI Global

Reference44 articles.

1. Real time processing of data from patient biodevices.;R.Abadia;Proceedings of the Fourth Australasian Workshop on Health Informatics and Knowledge Management-Volume 120,2011

2. ECG Reduction for Wearable Sensor

3. A count data model for heart rate variability forecasting and premature ventricular contraction detection.;R.Allami;Signal, Image and Video Processing,2017

4. SOAP based Assistive Care Loop using wireless sensor networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3