Distributed Streaming Big Data Analytics for Internet of Things (IoT)

Author:

Krishnan Sornalakshmi1,Jayavel Kayalvizhi1

Affiliation:

1. SRM University, India

Abstract

In this chapter, a discussion on the integration of distributed streaming Big Data Analytics with the Internet of Things is presented. The chapter begins with the introduction of these two technologies by discussing their features and characteristics. Discussion on how the integration of these two technologies benefit in efficient processing of IoT device generated sensor data follows next. Such data centric processing of IoT data powered by cloud, services and other enablers will be the architecture of most of the realtime systems involving sensors and real-time monitoring and actuation. The Volume, Variety and Velocity of sensor generated data make it a Big Data scenario. In addition, the data is real time and requires decisions or actuations immediately. This chapter discusses how IoT data can be processed using distributed, scalable stream processing systems. The chapter is concluded with future directions of such real time Big Data Analytics in IoT.

Publisher

IGI Global

Reference36 articles.

1. Apache Software Foundation. (2016a). Apache Samza - What is Samza? Retrieved March 4, 2017 from http://samza.apache.org

2. Apache Software Foundation. (2016b). Apache Spark Streaming-Spark Streaming makes it easy to build scalable fault-tolerant streaming applications. Retrieved January 3, 2017 from http://spark.apache.org/streaming/

3. Apache Software Foundation. (2016c). Apache Storm. Retrieved January 2, 2017 from http://storm.apache.org/

4. Banks, A., & Gupta, R. (2014). Oasis, MQTT Version 3.1.1, OASIS Committee Specification Draft 02 / Public Review Draft 02. IBM. Retrieved January 7, 2017 from http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html

5. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the Third International AAAI Conference on Weblogs and Social Media ICWSM ’09 (pp. 361-362). Retrieved March 4, 2017 from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Realtime Middleware-based Distributed Micro-Smart Electricity Meters;2024 12th International Conference on Smart Grid (icSmartGrid);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3