Affiliation:
1. Maharaja Research Foundation, University of Mysore, India
2. Karnataka State Open University, India
Abstract
Shot boundary detection in videos is one of the most fundamental tasks towards content-based video retrieval and analysis. In this aspect, an efficient approach to detect abrupt and gradual transition in videos is presented. The proposed method detects the shot boundaries in videos by extracting block-based mean probability binary weight (MPBW) histogram from the normalized Kirsch magnitude frames as an amalgamation of local and global features. Abrupt transitions in videos are detected by utilizing the distance measure between consecutive MPBW histograms and employing an adaptive threshold. In the subsequent step, co-efficient of mean deviation and variance statistical measure is applied on MPBW histograms to detect gradual transitions in the video. Experiments were conducted on TRECVID 2001 and 2007 datasets to analyse and validate the proposed method. Experimental result shows significant improvement of the proposed SBD approach over some of the state-of-the-art algorithms in terms of recall, precision, and F1-score.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献