Effective Video Shot Boundary Detection and Keyframe Selection using Soft Computing Techniques

Author:

Rashmi B S 1,Nagendraswamy H S 1

Affiliation:

1. University of Mysore, Mysore, India

Abstract

The amount of video data generated and made publicly available has been tremendously increased in today's digital era. Analyzing these huge video repositories require effective and efficient content-based video analysis systems. Shot boundary detection and Keyframe extraction are the two major tasks in video analysis. In this direction, a method for detecting abrupt shot boundaries and extracting representative keyframe from each video shot is proposed. These objectives are achieved by incorporating the concepts of fuzzy sets and intuitionistic fuzzy sets. Shot boundaries are detected using coefficient of correlation on fuzzified frames. Further, probabilistic entropy measures are computed to extract the keyframe within fuzzified frames of a shot. The keyframe representative of a shot is the frame with highest entropy value. To show the efficacy of the proposed methods two benchmark datasets are used (TRECVID and Open Video Project). The proposed methods outperform when compared with some of state-of-the-art shot boundary detection and keyframe extraction methods.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Video shot-boundary detection: issues, challenges and solutions;Artificial Intelligence Review;2024-03-30

2. Keyframe Extraction Using Sobel Fuzzified Weighted Approach;Advances in Intelligent Systems and Computing;2021

3. Shot based keyframe extraction using edge-LBP approach;Journal of King Saud University - Computer and Information Sciences;2020-11

4. Video shot boundary detection using block based cumulative approach;Multimedia Tools and Applications;2020-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3