Detecting Anomalous Ratings in Collaborative Filtering Recommender Systems

Author:

Yang Zhihai1,Cai Zhongmin1

Affiliation:

1. Xi'an Jiaotong University, Xi'an, China

Abstract

Online rating data is ubiquitous on existing popular E-commerce websites such as Amazon, Yelp etc., which influences deeply the following customer choices about products used by E-businessman. Collaborative filtering recommender systems (CFRSs) play crucial role in rating systems. Since CFRSs are highly vulnerable to “shilling” attacks, it is common occurrence that attackers contaminate the rating systems with malicious rates to achieve their attack intentions. Despite detection methods based on such attacks have received much attention, the problem of detection accuracy remains largely unsolved. Moreover, few can scale up to handle large networks. This paper proposes a fast and effective detection method which combines two stages to find out abnormal users. Firstly, the manuscript employs a graph mining method to spot automatically suspicious nodes in a constructed graph with millions of nodes. And then, this manuscript continue to determine abnormal users by exploiting suspected target items based on the result of first stage. Experiments evaluate the effectiveness of the method.

Publisher

IGI Global

Subject

Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A CNN-based Hybrid Model and Architecture for Shilling Attack Detection;2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2021-09-12

2. Detecting Shilling Attacks Using Hybrid Deep Learning Models;Symmetry;2020-10-31

3. Shilling Attack Detection Scheme in Collaborative Filtering Recommendation System Based on Recurrent Neural Network;Advances in Intelligent Systems and Computing;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3